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SU,(l, 1) and the relativistic oscillator 

R M Mir-Kasimovt 
International Centre for Theoretical Physics, Trieste, lfaly 

Received 18 December 1990 

Abstract. I t  is shown that the generalization of the quantum harmonic oscillator to the 
case of the relativistic configurational space is a q-oscillator. The corresponding group of 
dynamical symmetry is the quantum group SU,(I,  I ) .  The deformation parameter being 
q = e""/'"o where Rw,=4me2 and w is a frequency of the oscillator. The deformed creation 
and annihilation operators are finite difference ones. The corresponding deformation of 
the Heisenberg-Weyl group and new coherent states are also considered. 

1. Introduction 

The purpose of this paper is to give an example of an  exactly solvable problem 
possessing at the same time quantum symmetry. In the last few years quantum groups 
have attracted great interest from both physicists and mathematicians. Among the 
important problems is the search for real physical systems with q-symmetry. One tries 
to find an exactly solvable problem in which the corresponding symmetry manifests 
itself as the quantum Lie algebra and the wavefunctions realize its representations. A 
series of papers was devoted to the q-oscillator (Biedenharn 1989, Macfarlane 1989, 
Kagramanov er al 1990). 

The quantum deformation of Lie algebras emerged initially as the basic algebraic 
structure connected with the Yang-Baxter equation and the quantum inverse method 
(Faddeev 1984, Faddeev er a/ 1989, Manin 1987, Kulish and Sklyanin 1982, Kulish 
and Reshetikhin 1983, Chaichian and Kulish 1990, Chaichian et a/ 1990). The author 
of the present paper agrees with the point of view expressed by Carow-Watamura et 
a /  (1990; see also Bayen et al 1978) that this new type of deformation based on the 
Hopf algebra structure of the functions over groups must be considered in the general 
framework of deformations of the physical theories and models. Between other well 
known deformations are special relativity as deformed Galilean relativity with the 
velocity of light c as the deformation parameter or quantum mechanics as deformed 
classical mechanics with the Planck constant h as the deformation parameter. 

Further, we shall show here that in our concrete relativistic deformation of quantum 
mechanics the parameter c of the relativistic deformation is at the same time the 
q-deformation parameter of the group of dynamical symmetry. In other words, in  this 
approach the q-deformation is the reiativistic effect which disappears in the non. 
relativistic limit. 

t Permanent address: Laboratory of Theoretical Physics, Joint Institute of Nuclear Research, Head Post 
Office Box 79, SU-141980 Dubna, USSR. 
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4284 R M Mir-Kasimou 

We consider the relativistic deformation of the Schrodinger equation based on the 
Gelfand-Graev-Shapiro transformation, i.e. the Fourier expansion in relativistic 
'deformed plane waves' (Kadyshevsky et a /  1968, Mir-Kasimov 1966) 

- 1  -i,,"W/ h ,  
Po - P" 

(rip)= (c) 
r = r n  n2= 1 O < r < m .  

The space of vectors r will be called the relativistic configurational space or r-space. 
We shall see that the gometry of this space is the deformed Euclidean geometry of the 
usual three-dimensional configurational space. The variable r is the relativistic invariant 
and canAbe expressed in terms of the eigenvalues of the Casimir operator of the Lorentz 
group C = N 2 -  L2, where N and L are boost and rotation generators: 

The four-momentum vector p ,  ( f i  = 0, I ,  2,3) of the free relativistic particle with 
mass m belongs to the mass shell, i.e. the upper sheet of the hyperboloid 

(3) 

or p-space of Lobachevsky. The group of motions of this space is the Lorentz group. 

p 2 - p 2 = m 2  C 2 

In the non-relativistic limit 

(4) 

the deformed plane wave ( I )  goes over into the usual plane wave: 

(rip)= exp[ -( 1 + i r y ) l n ( ~ ) ]  

=exp [ - ( l + i r -  7)  In ( I--+++ E 2m2c ...)I 
= exp( i r  y )  = exp( i y) 

2. Relativistic quantum mechanics 

Relativistic quantum mechanics in r-space was developed in several papers (Atakishiyev 
er a/ 1980,1985,1986, Kadyshevsky et a/ 1968, 1969, Freeman el al 1969, Kagramanov 
el a/ 1990). As in the non-relativistic limit (4) this theory reduces to usual quantum 
mechanics. For the sake of clarity of presentation we write down the necessary 
non-relativistic formulae. The Schrodinger equation is the second-order differential 
equation 

(A:+ v(r ) -  E , ) + ( r )  = O  
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The wavefunction in momentum space $(p) is connected to $( I )  by the Fourier 
transformation 

Equation (6) in momentum space takes the form 

Momentum space over which the integration in (7) and (8) is carried out is the 
three-dimensional Euclidean space. More important is that the plane wave eiPlh is 
naturally connected with the geometry of momentum space. It is the matrix element 
of the group of translations, and at the same time it is the generating function for the 
matrix elements of the unitary irreducible representations of the group of motions of 
momentum space (i.e. the three-dimensional Euclidean group) on a spherical basis. 
This fact is reflected in the well known relation 

where the spherical Bessel functions j l (px/h)  =- JIIIIZ(px/h) are the matrix 
elements corresponding to the subgroup of translations. The absolute value x of the 
x-vector is an invariant of the group of motions of p-space or eigenvalue of its Casimir 
operator: 

a 
JP 

D x = i h - - .  (10) 
(X2)eiP=/h = - h 2 ~  e i p = l h  = ,.2 e i ~ r / h  

If the two-body problem is considered then p, k and x in (6) and (8) are the relative 
momentum and relative distance of the two particles correspondingly. 

It is worthwhile mentioning here that the group of motions of the momentum space 
does not have such a transparent physical sense as the spacetime group of invariance 
of non-relativistic quantum mechanics which is the Galilean group. Let us also stress 
that r is Galilean invariant. 

We can derive the relativistic Schrodinger equation passing from the Euclidean 
non-relativistic momentum space to the Lobachevsky space (3). So we come to the 
quasipotential equation (see Kadyshevsky el a1 1968 and references therein) 

1 
I L ( ~ ) = ( 2 a ) ' m a ( p - q ) + ( 2 ? r j ~  G J p )  I U k ;  E,)$(k)d% (11) 

where 

dk =m 
is the volume element of Lobachevsky space. In (10). (11) and in what follows we use 
the unit system in which fi = c = m = 1 

G , ( p ) =  (2q,-2p0+i~)- ' .  (13) 
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To obtain the relativistic Schrodinger equation in r-space we must expand $ ( p )  in 
relativistic plane waves (1): 

Let us consider this in more detail. The relativistic plane waves are the eigenfunctions 
of the Casimir operator (2) and therefore are generating functions for the matrix 
elements of the principal series of the unitary irreducible representations of the Lorentz 
group: 

m 

where 

and the polyspherical coordinates 

po = cosh x p = n, s inhx  

where introduced. 
The difference between the right-hand sides of (15) and (9) is in their radial parts. 

In (15) we have Legendre functions which correspond to boosts, instead of the spherical 
Bessel functions in (9) corresponding to shifts. It is instructive to compare the radial 
parts of (9) and (15): 

x ,F , ( - i r+ l+l ,  I +  1; 2 /+2;  2 s i n h x  e-"). (18) 

We see that as a consequence of the relativistic deformation the r-dependence was 
displaced from the argument of the hypergeometric function in (17) to its parameter 
in (18). As the consequence the number of the left subscripts of pF4 increased from 1 
to 2. This feature carries a general character. For example, the solution of the relativistic 
Coulomb problem in this approach was obtained through similar deformation of the 
non-relativistic Coulomb wavefunction (Freeman el a1 1969). So the free radial 
wavefunction becomes the function of the 'discrete' variable (Kadyshevsky et a1 1969). 
Functions of this type do  not satisfy any differential equation of finite order, but only 
the finite-difference or recurrence equation. 

It is easy to verify that the relativistic plane wave obeys the differential-difference 
Schrodinger equation 

( H o - p o ) ( r l d  = O  (19) 

where the Hamiltonian operator has the form 

J i . a A,, 
J r  r J r  r 

H,=coshi-+-s~nhi--,e'"'"'. 
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The relations (19) and (20) can be considered as the solution of the old problem of 
extracting the square root in the expression for the relativistic energy: 

Of course this statement makes sense if we prove that the scheme based on (20) does 
really work, which is the case. The formalism of finite-difference quantum mechanics 
was developed by Kadyshevsky er al (1968) and Freeman et al (1969) and carries 

interacting particles are described by the equation 

pa = m. (21) 

mnn., fnnr..m, -f A;+T-.-"*:", F,.-..."l:r... ^F --- -..l^.:..:^t:^ ^..^_I..... -....l."..:-" TI.- '..--, . . ,YL". I I  ". Y I L L . L I . I I ' ( L I  n Y I A I 1 a I 1 D 1 1 .  Y1 I I Y I I - I = ~ ' l I I " I D L I &  qu'vrrurrr u&=bJlakuL.a.  1 L l r  

(Ho+ W - p o ) $ ( r ) = O .  (22) 
The potential V(r) can be obtained as the quasipotential in the field-theoretic formalism 
of the quasipotential (1  1 1 ,  or introduced phenomenologically. The scattering theory 
based on partial shifts was built up. The theory of functions of discrete variables, 
generalizing the elementary and the most important special functions for the case of 
finite-difference calculus, was developed. These functions are deformations of their 
non-relativistic analogues in the sense described previously (cf (17) and (18)). All the 
approximations usually used in quantum mechanics, including the variable phase 
approach, were also developed. All important exactly solvable cases of quantum 
mechanics (potential well, Coulomb potential, harmonic oscillator) are exactly solvable 
as well as for the case of (22). The manifold of solutions of the finite-difference 
equations is richer than for differential equations. For example, among the unusual 
solutions there exists one which can be considered as the wavefunction of the confined 
quark-antiquark system (Kagramanov et al 1989). 

It is important to stress the Euclidean or deformed Euclidean character of the 
r-space. There exist three commuting operators $t of three momenta: 

[ $,, $,I = 0 i, j =  1,2 ,3  (23) 

sin rp'cos 9 d cos Q d 
;,=sin a s i n  rp(eid'ar-Go)-i r a 9  r s i n 9 d r p  -).iata. (24) 

for which the plane waves (1) are the common eigenfunctions 

Cj(rlp)=p,(rlp). (25) 
This "IS :ha: :he defc:;.;,ed p!ax  wves  (1) ad-ally describe :he free :e!ativis:ic 
motion with definite energy and momentum. But from the group-theoretic point of 
view we have here the deformed representation of the inhomogeneous Euclidean group, 
For example, the operator of angular momentum 

is a generator of rotation 
a 

av  
L , z = i -  

deformed by the factor eiaid' 
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3. The one-dimensional case 

In the case of only one spatial component the relativistic plane wave takes the form 

(28) (XI P) = (Po -P)-” 

or, in hyperpolar coordinates, 

po = cosh ,y p = sinh ,y (29) 
we have the exponential function 

(xlp) = e’”. (30) 

The difference from the usual non-relativistic plane wave is that here in the exponent 
instead of the momentum we have its hyperbolic argument, i.e. the rapidity 

x=In(p0+p) .  (31) 

The one-dimensional plane waves obey the completeness and orthogonality conditions 

’ 2 T  j (xlp)dn,(plx)=6(x-x’)  (32) 

where 

d sinh ,y 
cosh ,y 

dR,=-- - dX (PIX) = (XIP)* (34) 

The free Hamiltonian and momentum operators are again the finite-difference operators 

A d 
p^ = -sinh i - 

d 
Ho= cosh i - 

d x  d x  (35) 

The free equation has the form 

(fio-Po)(xlP) =o. (36) 

We can rewrite this equation in such a way as to make it indistinguishable from the 
non-relativistic Schrodinger equation. This is achieved by passing to the ‘half rapidity’ 
variable. We use the relation 

(37) 2 x  cosh ,y=l+2s inh  -. 
2 

Now we return for the time being t? the dimensional quantities and introduce the 
relativistic ‘kinetic energy’ operator h, by the relation 

(38) 
* ”  i d  
h,= Hu- mc2= 2mc2sinhi- -. 

2 d x  

The operator of relativistic ‘kinetic momentum’ 

i d  k ^ =  -2 mc sinh- - 
2 dx 

(39) 
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is connected to the relativistic free energy operator & by the non-relativistic relation 

Finally, we come to the one-dimensional relativistic Schrodinger equation 

k^2 ( k -  e)$(  x)  = (Lo+ V (  x) - e )$ (  x) = (,+ V( x) - g-)$(x) = 0 ' (41) 
\irY A"', 

where 

X k = 2mc sinh -. k 2  
2m 2 

e = -  

is impnsrib!e !Q rfis!inguish (41) from the gsga! SchrGdinger equ.!iQn anti! we 

concretize the finite-difference operator of the free energy. This is a manifestation of 
the close similarity of the relativistic approach we are considering and the usual 
quantum mechanics. 

In  is also worthwhile to stress that owing to the finite-difference (recurrence) 
character of operators this theory is very close to the theory on the lattice. In fact, all 
results of this paper can easily be rewritten for a lattice. 

4. The relativistic linear quantum oscillator 

A direct method for the relativistic generalization of the harmonic oscillator potential 
or the elastic force does not exist. We define the relativistic quantum oscillator by 
applying a number of natural requirements on  (41) (see also Kim and Noz 1978, Bohm 
er a /  1985, Atakishiev et a /  1980, 1985, 1986, Mukunda er a/ 1980). It must be the 
exactly sovable case, the non-relativistic limit of which is the usual linear oscillator. 
Symmetry must exist between the equations in momentum and configurational rep- 
resentations. This property plays an important role in the non-relativistic case. The 
coherent states minimizing the corresponding uncertainties relation must exist. And. 
of course, any oscillator model of interest must incorporate dynamical symmetry, which 
is natually some deformation of the SU(1, 1)  group of dynamical symmetry of the 
non-relativistic oscillator to which this generalized symmetry reduces in the non- 
relativistic limit. We shall see that for our relativistic oscillator it is the SU,(l ,  1) 
quantum group, where the relativistic parameter of deformation q has the form 

Y = c-uh/4m<2 (43) 

where o is the oscillator parameter (frequency). We see that the parameter of deforma- 
tion is a pure relativistic quantity and becomes unity in the non-relativistic limit. 

In  the foundation of our construction lies the relativistic finite-difference general- 
ization of the well known factorization method (Basu and Wolf 1983, Moshinsky 
1969, lnfeld and Hull 1951). 

We recall here the necessary relations connected with the finite-difference factor- 
ization method (Kagramanov et a/  1990). We suppose that the bound-state wave- 
function has the form 

$o(x)=e-"" (44) 
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where p is a positive-definite function. Then we look for the generalizations of the 
creation and annihilation operators A* in the form 

where a (x )  is an arbitrary function which we have to define. It can be shown that as 
a consequence of the more complicated rules of the finite-difference calculus, for 
example 

i d  i d  i d  i d  =sinh- - q(x)  cosh- - $(x)+cosh- - q(x )  sinh- - $(x) 
2 d x  2 dx 2 dx 2 d x  

(46) 

compared with the differential calculus, we must consider the deformed commutator 
instead of the usual one: 

[A-, A+],(,,= A-q(x)A+-A+q-’(x)A- (47) 

where 

Inq(x)=2 

Substituting (45) and (48) into (47) we obtain 

[A-, A’],(,,= - ia (~) [w+P++a-P- l  (49) 

a,(x)=a(x*$)  (50a)  

p*(x) = sinh(p(x+ i )  -p(x)) *sinh(p(x -i) -p(x)).  (Sob) 

where 

For the non-relativistic oscillator, the creation and annihilation operators are 

and the corresponding commutator is equal to a constant: 

[ a - ,  a + ]  = w. 

Let us accept by definition that in the case of the relativistic oscillator a similar equality 
holds: 

[A-, A’],,,, =constant. (53) 

Considering (53) as the equation for p(x) we find that 

which means that the ground state wavefunction for the relativistic potential coincides 
with the non-relativistic one. The deformation parameter q(x) becomes a constant (43) 
and the function a (x )  has to be equal to 

a (x)=cos  0x12 ( 5 5 )  
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we have 

2 d x  

As q(x)=constant the deformed commutator (97) becomes the combination of the 
usual commutator and anticommutator: 

W W [A-; A+],= aA-At-o-'AtA-=cosh-IA-~ A+!-sigh-(A- A'!. (57) 4 L - -  ' - -  4 '-- '.- 

Our relativistic finite-difference creation and annihilation operators A+ are actually 
very close to the  finite-difference operators 6, bf employed by Macfarlane (1989) with 
the commutation relation 

qbb+-q-'b+b = q-q - ' .  ( 5 8 )  

In Macfarlane's paper the operators were introduced by definition. I n  our approach 
we can obtain them in a framework of the finite-difference factorization method. The 
operators b, b+are restored if we use the following splitting of the free Hamiltonian (40): 

) (59) )( 1 - e W d x  io= -2sinh --=2(1-e-'d/d" 2 i  d 
2 dx 

and take the slightly modified ground state wavefunction 

(60) 

We can express A' in terms of the non-relativistic creation and annihilation 

*o(x) =e-ux'/2-2i'"r 

instead of (54). 

operators ( 5 1 )  using the Baker-Campbell-Hausdorf formula: 

I 
sinh - a*.  

' d  iA 
sinh- F-+ox =-  

iJz A*=-- 
cosfox ;( dx ) cos[(a++a-) /2f i ]  k 

Let us introduce the operators 

2i i d  6=-- sinh - - 
cos&~x 2 d x  

1 i d  
cosfwx 2 d x  

i.=- cosh - -. 

We can write 

(64) 
A * = F ~ e . y ' v 2 j J  1 erw.r'/2 

- .  
~~ J2- 

A simple calculation gives 

W 
[A-, A'], = 4  sinh-= 4 2 ( q - ' -  4). (65) 

The Hamiltonian of a relativistic oscillator is written in the fac!orized form 
L = L ~ A -  , A+} 'I ='J, A-A+ + e y / 4  A+A-) 

- A + A - + ~ , = ~ - " / ~ A - A + - ~  - - 2( f2 - cosh y )  (66) - 



4292 R M Mir-Kasimov 

where 

U 
e0=2sinh-.  4 (67) 

It can easily be shown that 

e - l " A " j . - e - " / d f ~ * = [ ~ ~ ,  f],,,.=o. (68) 

[At, h]q=(q2-q-2)A+ (69) 

It follows from (65) and (66) that 

[A-, hI4-t = - ( q 2 -  q-2)A-.  (70) 
This justifies the interpretation of A* as the creation and annihilation operators. Putting 

we obtain from (69) and (41) the recurrence relations connecting the neighbouring 
levels, 

W 
e,+,=e"12e,+2e"14sinh- 2 (72) 

which gives the spectral formula 

Notice that this spectral formula also corresponds to the Hamiltonian 

$,=2mr2(exp(%) -cosh- 

(73) 

(74) 

where H., is the non-relativistic Hamiltonian and the dimensional variables are restored. 
The eigenfunctions of the finite-difference equation (41) with the Hamiltonian given 

by (66) are defined in the form 

+"(x)= N, e~"ri12 h,(x) (75) 

where by definition 

The wavefunctions obey the normalization conditions 
CG 

(78) 

In (75) the h , ( x )  are the 'relativistic Hermite polynomials' which we must find. They 
satisfy the equation 

W X  
$. (x)$, (x) cos - d x  = S,, . L 2 
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where f is given by (63). When constructing the theory of the h ,  functions we shall 
follow the scheme accepted for the non-relativistic oscillatory solutions taking into 
account the finite-difference character of the formalism. 

The h, , (x )  are defined by the 'Rodriguez formula': 

h , ( x )  = --emx*& e-yx2 hn-l  (80) 
1 

Jz; 

h , { - x ) = ( - l ) " h , ( x )  

hw 
4 

sln- h,(x)+-sslnh-ee['"+'"41" H 

& &h,(x)  = 8 sinh- h , _ , ( x )  

h n + , ( x ) - -  4 e[(n+l) /41w . wx 8 . hw 
Jz; 2 W 4 

" - I i X )  = 0 

h,(x)  = 1. (82) 

The h , ( x )  are polynomials of nth degree of the variable sinwx/2. They satisfy the 
following recurrence relations: 

(83) 

i d  o x .  i d  
2 d x  2 2 d x  

h . (x)  -cosh - - h,(x)+i tan -sinh - - h, (x)  = O  

We can also derive relations analogous to 

m ! H 2 , , , ( x ) = ( - 1 ) ' " ( 2 m ) ! , F , ( - m ; $ ;  x 2 )  

m! H2m+l(~) = (-1)"(2m+ 1 ) ! 2 x  ,F , ( -m;  I; x') 

expressing the Hermite polynomials in terms of confluent hy[ 
We have 

m 

h2, , , (x)  = a:" cos l o x  
I = 0  

where 

m w .  m - l  m - / + I  

m i  1 m 4 2  m + l  

w . .  . sinh- w sinh - sinh ~ 

w sinh- w . .  . sinh- W sinh ~ 

4 4 4 .;" = . 3 - 1 ) '  e":i4 

4 4 4 

goemetric 

m + l  m + 2  2 m - I  2m 
w .. . sinh ~ wsinh-w w sinh - 

4 4 4 dm el"8,"#+,,14]w sinh - 4 .;" 
W m  w , 2w mw 

sinh - sinh - . . . sinh - 
4 4 4 
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where 

m w .  m - 1  m - 1 + 1  
sinh - sinh - w . .  . sinh- 

m + 2  m + 3  m + l + l  

w 
4 2 m + l ( - l ) l  e[lll+11/41u 4 4 p;"" p" 

w w .. . sinh - w sinh - sinh ~ 

4 4 4 

2m+l-\/;;e-[lm+11/41u cosh - m+' w. 
2 4 P a  - 

The integral representation for the relativistic Hermite polynomials can be derived by 
applying the recurrence relation (81) to the identity 

We have 

where T . ( f )  are the polynomials which satisfy the recurrence relations 

w d  hw e-'"" T,,+,( t )+2 e'""'/4sinh--(e-'2/'" T m ( t ) ) - 2  sinh- 
4 di 4 

e [ ln+ l ) /41u  T" -, ( 1 )  = 0 

(93b)  
e[(2nt3"161'" (cosh i -cosh ihw) w d 

cosh-- T, , ( f ) .  
cosh i h w  sinh f f  4 dt  Tn+t(f)= 

The solution of these recurrence relations is 

T ~ ~ + , ( ~ )  =2m+l e[41m+l)'-1/161u 

5. The generalized Heisenherg-Weyl group and relativistic coherent states 

As the consequence of the finite-difference c~lculus  rule (46) the canonical commutation 
relation of coordinate x and momentum k ( 3 9 )  is changed as compared with non- 
relativistic quantum mechanics. We have 

[ f , L ] = i h A  (96) 

where 

A i h  d 
A =cosh - - 

2mc dx 
(97) 
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We stress that operators k  ̂ and A belong either to the universal enveloping algebra of 
the usual translations or  to the non-relativistic Heisenberg-Weyl group. Furthermore 

L [L,A]=O [i, a] = -~ 
i h  

(2mc') 

In the non-relativistic limit 

A+ i (unity operator) (99) 

[ x ,  61 = i h  i 
and relations (96) and (98) reduce to 

[L, i] = [i, i] = 0 (100) 

which is the well known Hesienberg-Weyl group. It is then natural to call the set of 
commutation relations (96) and (98) the generalized or relativistic Heisenberg-Weyl 
group. This group can he extended, including the unity operator, 

[ x ,  i] = [L, i] =[A, i] =o. (101) 

The extended group can also be considered as the generalization of the Heisenherg- 
Weyl group, to which it tends in the non-relativistic limit. On the right-hand side of 
(96) we have an operator, instead of a number as in the non-relativistic case. The 
relativistic uncertainties relation has the form ~ _ _  - 

( A $ )  ( A x ' ) > $ ( A ) * .  (102) 

Notice in this connection (Celeghini et a1 1990) where problems connected with the 
q-deformation of the canonical commutation relation and squeezing of light are 
considered. We look for the coherent states which minimize this relation, i.e. the states 
for which the equality in (102) holds. 

Let us consider the equation 

( i + i p L - A ) J I ( x )  = O  (103) 

where 

A =  . f+ ipE (104) 
are the average values of x and k  ̂ correspondingly. and p is real parameter, .f and 

The solution of (103) can be found using the relativistic Fourier expansion 

where A is the rapidity. In terms of rapidities the finite-difference equation (103) takes 
the form of a first-order differential equation: 

2 

The solution to this equation is 
e-4rcorh*/2-iA* 

& A )  = 

This is the kernel of the integral representation for the Macdonald function 
m 

~ , , ( ~ ) = f  l-,e-:co+r+.;, d i  (108) 
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and we obtain 

Now taking into account the recurrence relation for K, ,n(z ) ,  

2u 
K”- , ( z ) -K,+ , ( z )=- -KK, (z j  Z (110) 

it is easy to verify that (109) is indeed the solution of the finite-difference equation 
(103). The normalization integral for $ is calculated with the help of the integral 
representation (108) and the normalized J, has the form 

Let us compute now the quadratic average values of momentum and coordinate 
operators and average value of A. We have 

(p)=Im -m 

The following finite-difference analogue of partial integration can be proved: 

i d  
2 dx 

m 

f ( x )  sinh - - p(x) d x  = - p(x) dx (113) 

provided that /(x) and p(x) vanish at infinity sufficiently rapidly for all integrals to 
exist. This gives 

( !2 )=-41  

Now, using the explicit expression for J, (111) and (110) we have 

1 ( i ’ ) = ~  ( x 2 + f i 2 ~ 2 ) $ * ( x ) ~ ( x ) d x = ~ ( x 2 ) + ~ 2 .  (115 )  
P ‘ I  P 

The expression for the average quadratic value of a coordinante is 

(1’) = I-, $(x)x’$(x) dx 
m 

(116) 
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where (113) was used again. The first integral in this expression is zero in consequence 
of oddness of the integrand. In the second integral we again use the partial integration 
rule (113). We have 

(x2) = &-) 4c [ - (cosh: i d  K.i+al(4~)) x K 2 1 d ( 4 ~ c )  dx 
-m 

which after omitting the vanishing integral finally gives 

I t  follows that 

The average value of A is calculated using the recurrence relation 

which gives 

Taking (120) into account we can rewrite (115) in the form 

Then 

and finally we arrive at the equality 

( ( A x ) ~ ) ( ( A ~ * ) ~ )  = :(22) 
which shows that our coherent states (109) indeed minimize the uncertainty relation 
(102). 
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6. The dynamical symmetry of the relativistic oscillator 

It is easy to show that the operators 

(127) 
... I.̂-_- 
W I I G I G  

8, = 4 )  (128) 

obey the deformed (quantum) Lie algebra SUJI, 1 )  relations (Kagramanov ef a/ 1989, 
Chaichian and Kulish 1990, Chaichian et al 1990) 

[ L + ,  L-],2 = L’ [L*,  L’IU*L = FL*. (129) 

In the non-relativistic limit the expressions (127) and (129) turn into the well known 
formulae for the generators of the group S U ( 1 , l )  of dynamical symmetry of non- 
relativistic oscillator (see, for example, Malkin and Manko 1979). for the deformed 
Lie q-algebra (129) the deformed symmetry and Jacobi relations are fulfilled 

[A ,  Bl, = - [ E ,  d I , - l  (130) 

~ ~ A , ~ I , , ~ I + ~ ~ ~ , ~ I , ~ A I + ~ ~ ~ , A I , , ~ I = ~ .  ( 1 3 1 )  
Let us introduce the operators 

;+= (28_)-I/2dtqN/2 

where 

We have 

(1350) 

i -8+Lq;+ ; -=  q-N,  (1356) 

The operator N is connected with the oscilltor Hamiltonian (66) and f i n  (63) by the 
relations 

;-;+-q-l;+;-=qN 

T =  q - N - 1 / 2  

It follows from (68). (133) and (137) that 

[ N :  a‘”! = *6* 

and 
qrN;+q-rN = q r t +  

qrN;-q-rN - r l -  = q  a .  

(138) 

(1390) 

(139b) 
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The relations (135) can also be written in the form 

;+;-=[NI 

;-a^+ = [ N +  11 

where 

q x  - q - x  sinh w/4x 
q - q-' sinh 014 ' 

[XI=-- - 

(140a) 

(1406) 

Now defining new q-generators J', J' as 

1 
J' = 2~ + 1 (142) J'=L (L+;-)I/z;+ I-=- ;-(5+;-)1/2 

J5 J5 
we come to C-algebra (see Abe 1980) in the form considered by Jimbo (1987). 
Macfarlane (1989), Biedenharn (1989), Woronowicz (1988). Hayashi (1990) and 
Floreani er a1 (1990): 

[ J 3 , J * ] = * J i  [J+,  J-I = -[J)I. (143) 

We preferred here the construction for L- and J-operators which is a modification of 
the one described for example by Barut and Fronsdal (1965), Barut and Girardello 
(1971) and Malkin and Manko (1979) instead of the Jordan-Schwinger mapping used 
by Macfarlane (1989) and Biedenharn (1989). 

One of the approaches to quantum groups defines them by the matrices of the 
lowest-order representations (Faddeev 1984, Manin 1987, Vokos et a1 1989). Thus the 
simplest example of such a method is the definition of the quantum two-dimensional 
linear group SL,(2, C) by giving quantization relations for the elements of the 
2 x 2 SL(2, C) matrices. We say that a 2 x 2 matrix 

& = ( a  c d  b )  

belongs to the quantum group GL,(2, C )  if its matrix elements, instead of being 
complex numbers, are non-commuting quantities satisfying the commutation relations 

ab = qba 

ac = qca 

bd = qdb 

cd = qdc. 

bc = cb 

ad - da = ( q  - q-')bc 

We shall show here that the quantities a, b, c, d are the finite-difference operators 
acting in Hilbert space and they can be expressed in  terms of A* and T introduced 
by the relations (56) and (63), Namely, taking into account the relations (65). (66) 
and (68) we see that the elements of the matrix 
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obey all the conditions listed in (145). As stressed by Vokos et a/  (1989), to formulate 
the composition law for such matrices we must consider a manifold of matrices of the 
same type, i.e. with elements satisfying the commutation relations 

a'b' = qb'a' 
arc'= qc'a' b'c'= c'b' 

b'd' = qd 'b' 

c'd'= qd'c'. 

a ' d ' - d ' a ' = ( q - q - l ) b ' c '  (147) 

We must also suppose that a', b',  c' ,  d' commute with a, b, c, d.  In the language of 
our relativistic oscillator this means that we must consider an infinite number of 
independent oscillators. It is easy to show that the matrix 

&P=9999 '=(c , ,  a" d , , ) = (  b" 
aa'+bc' ab'+bd')  
ca' + dc' c a ' i  dd' 

1 

4 
0, = det 99 = ad - qbc= da -- be. (150) 

It reduces to the usual determinant for q = 1. Using the conditions (145) it can easily 
be seen that Dq commutes with the elements a, b, c, d. Again using (66) we find that 
the quantum determinant of the matrix (146) is unity: 

d e t s d = l .  (151) 
9 

The inverse matrix (both left and right) is 

This matrix corresponds to the quantization parameter q-' (or - U ) ,  for example 

The conditions (145) can be considered as a quantum generalization of symplectivity 
conditions for the matrix A. We can say that the 'transformations' generated by the 
matrix sd conserve the symplectic form 

(154) f = aa,y = 1 1 4  
where 

,f = ($ -.) Y = ( -A;a) 
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and the quantum metric tensor is 

(156) 

Indeed, we can easily verify that 

+Ts;'= &' 
where .cdT is the transpose of the matrix d. 
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